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A logarithmic singularity is typically present in the kernels of two-body, bound-
state integral equations after the two angular variables associated with three-
dimensional spherical coordinates are separated. The singularity occurs in the
separated Schdinger equation, the separated Bethe—Salpeter equation in the instan-
taneous approximation, and the partially separated Bethe—Salpeter equation. Prob-
lems integrating over the singularity have restricted the types of basis functions that
have been used to obtain numerical solutions, making it particularly difficult to ob-
tain bound-state solutions that decrease rapidly at both small and large momenta.
Here integrals are evaluated analytically in the neighborhood of the singularity by
expanding the integrands, excluding the singular kernels, either analytically or nu-
merically in a Taylor series or a Maclaurin series. This technique makes possible the
use of nonpolynomial basis functions that satisfy the boundary conditions, allowing
the efficient calculation of all solutions. © 2001 Eisevier Science

Key Wordsbound-state integral equation; Bethe—Salpeter equation; instantaneous
approximation; logarithmic singularity.

1. INTRODUCTION

The Bethe—Salpeter equation [1], which is based on field theory, is covariant, and
duces to the Scbdinger equation in the nonrelativistic limit, is an appropriate equatio
to use in describing relativistic bound states. Typically the Bethe—Salpeter equation is
integral equation although, at least in some cases, it can be expressed as a differential ¢
tion. If a two-body, bound-state Bethe—Salpeter equation is rotationally invariant in thre
dimensional space, the two angular variables associated with three-dimensional sphe
coordinates can be separated. When written in integral form, after the two angular varial
are separated a logarithmic singularity is present in the kernels. While this singularity
not the primary reason that the Bethe—Salpeter equation is often so difficult to solve [2],
singularity complicates obtaining solutions.
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Since, even numerically, the two-body, bound-state Bethe—Salpeter equation often ca
readily be solved, various approximations such as the Blankenbecler—Sugar approximé
[3] or the instantaneous approximation [1, 4] are often made that reduce the covar
equation in four dimensions to an approximately covariant integral equation in three
mensions. The instantaneous approximation, which is the approximation that the binc
gquanta travel instantaneously between the bound constituents, was first introduced ir
original article by Bethe and Salpeter [1] and was used to demonstrate that teigglr”
equation is the nonrelativistic limit of the Bethe—Salpeter equation. More in the spirit
this work, Salpeter [4] made the instantaneous approximation to reduce the Bethe—Salj
equation to a three-dimensional equation and calculated corrections to the fine structu
hydrogen-like atoms. A major difficulty in solving equations numerically when the insta
taneous approximation is made arises because a logarithmic singularity occurs in the ke
of the integral equations after the angular dependence of solutions is separated.

Gammel and Menzel [5] deal with the logarithmic singularity by using a special weightir
scheme in the neighborhood of the singularity. Kwon and Tabakin [6] and Di Leo a
Darewych [6] use a subtraction technique that isolates the singularity in an integral t
can be evaluated analytically. Silvestre-Bratal. [7] use splines (see, for example, [8])
as basis functions and then use recursion relations so that the various integrals are wi
in terms of a single integral that is calculated analytically. Eyre and Vary [9] introduce
numerical cutoff and then correct for the effects of the cutoff using perturbation theo
Later Spence and Vary [10] used splines [8] as basis functions and evaluate all integ
analytically. Since splines are polynomials, their method and that of Ref. [7] are restric
to polynomial basis functions. In this article methods are used to integrate analytically o
the logarithmic singularity that allow the use of nonpolynomial basis functions that sati
the boundary conditions. Specifically, inameighborhood of the singularity, excluding the
Legendre functions of the second kind that contain the singularity, integrands are expar
either analytically or numerically in either a Taylor series or a Maclaurin series, maki
it possible to evaluate the integrals analytically in thaeighborhood. For bound-state
solutions that decrease rapidly at small and large momenta, which for thed8ulei
equation are typically solutions with larger angular momentum, if solutions can be obtait
atall, significantly more basis functions must be used when the solution is expanded in te
of basis functions that do not satisfy the boundary conditions.

To estimate the accuracy of each solution, the left- and right-hand sides of the equa
are calculated at a series of points, and a reliability coefficient [11], which is a statisti
measure of how accurately the left- and right-hand sides agree at the selected poin
calculated. Examining points where the left- and right-hand sides of the equation ac
least well reveals possible problems with trial solutions and suggests possible remedie

The effectiveness of the methods for integrating over the singularity is demonstratec
using basis functions that satisfy the boundary conditions to obtain numerical, bound-s
solutions for a spin-0 and spint2 constituent that interact via minimal electrodynam-
ics, both in the nonrelativistic limit and in the instantaneous approximation. Bound sta
of a spin-0 and spin/R constituent are of interest because they have been proposec
composite models of leptons, either when the two particles interact electromagnetic
[12] or when they interact through a stronger force [13]. However, the methods dem
strated here for integrating over logarithmic singularities apply equally well to the mc
commonly studied bound state of two spiy2Jparticles. The presence of a derivative cou-
pling in the interaction complicates the construction of the Bethe—Salpeter equation in
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instantaneous approximation and yields an equation that contains both a single integral
a double integral with singular kernels.

2. DERIVATION AND SEPARATION OF THE BETHE-SALPETER EQUATION
IN THE INSTANTANEOUS APPROXIMATION

When a spin-0 field (x), which represents a quanta with chafgand mas$/, interacts
via minimal electrodynamics with a spin- field ¥ (x), which represents a quanta with
chargeq and massn, the renormalizable Lagrangian is [14]

L =[G{9" — QA" (~id, —QA#)¢] MZpT¢

+ Wy, (0" —qAHYY — MU — ZFWF“” 3 (2.1)

whereF,, = 9,A, — 3, A,.
Following standard procedures [1], in the ladder approximation the Bethe—Salpe
equation describing a bound state of a spin-0 boson and a gpifefinion is

(P + EK y —m){[p* — (1= EKH][p, — (1= &K, ] — MZ}xk (p)
_igQ [ d*q
@)% ) (P— g2 tie

[Py + 0"y — 24 =K pulxx (@.  (2.2)

In (2.2),K* is the four-momentum of the bound state, §risithe parameter that appears in

the definition of center-of-mass coordinates. Nonrelativisticakly m/(m + M), but when

the instantaneous approximation is magleancels out of the Bethe—Salpeter equation.
The instantaneous approximation [1, 4] is made by making the replacement

1 = 1 — - (2.3)
(P—a2+ic  (Po— 02— (P—-P2+ie —(P—q?+ie '
in the photon propagator in (2.2). Defining
Vi (q) = / doo xx(a) and ¢k (@) = / dap o xk (), (2.4)

the integral overgy in (2.2) can be carried out immediately. Going to the center-of
momentum frame wheré* = (E, 0), (2.2) becomes

[p%° = p'y' +EEyo—mi{[p° — (1 —£)E]? - p'p' — MAxe(p)

: oo d3 . . :
- (l;ﬂ()g4 (p —Z)z[yop‘) —y'(p' +d) — 21~ HEy°IVe(@)
iqQ dq

“ i | o qp @ (2.5)

wherexe(p) is the value ofyk (p) in the center-of-momentum frame.
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Solving (2.5) forxe(p), integrating overp® on both sides of the equation, and using
(2.4) yield

wm(P)EVE(p) = ‘:’UM((;) [om(P) + om(PIY%Y' P + ¥°mlWe(p)
qQ [~ d¥q { l:CUM(p)+CUm(p):| I
1-§H)E+ | ————
T 1623 —oo (P— Q)2 (1=5HE~+ om(p) rve
om(P) Qq [ d%

y m+y°yiq‘}wE<q)— 2@, (26)

wm(P) 1673 /o (p—1

wherewy (p) = (M2 + p - p)¥/?, etc. Equation (2.6) cannot readily be solved because
the presence of the two functions:z and ¢g that are related as indicated in (2.4). The
functiongg is present, of course, as a consequence of the derivative coupling. It is possi
however, to expresge in terms of Ug as follows: By dividing both sides of (2.5) by
{[p° — (1 —&)E]>— p'p' — M?} and then integrating ovep®, a second equation that
involves bothWe and ¢g is obtained. Subtracting the second equation from (2.6) ar
solving for¢e (p) yield

1 o
e = L—EEVe() — —— %' p' +°m)
wm(p)

aQ [ dq
16773 —00 (p—CI)Z

X |om(P)YEe(P) + VE(@Q)] - (2.7)

Using (2.7) to expressge (p) in terms of¥g, (2.6) becomes the Bethe—Salpeter equation i
the instantaneous approximation:

o (P EVe(p) = ZM((;’)) [om(P) + om(PI[y°' P + y M EWe(p)
qQ [~ d’q {{wM(p) } 0. i i [“’M(Q) } 0. ini
1 — 41
Tt ) -9 omm TP am@ T
wm(P) wM(Q)] 0 }q] (Q)? /°° d3q
{wmm) Fom@ ] ™ YEO T 2508 | p—02
m)/0+)/0)/iqi /oo d3k
We (k). 2.8
T om@ )o@k W 28

For consistency, if the term proportional ¢@Q)? in the above equation is retained, the
crossed and “seagull” diagrams, which also contribute terms proportiot@Qy?, should

be included in constructing the Bethe—Salpeter equation. Here the term is retained t
lustrate the somewhat different numerical techniques that are required to evaluate do
integrals, each of which has a kernel with a logarithmic singularity.

Equation (2.8) is much easier to solve numerically than the Bethe—Salpeter equat
primarily because it is much easier to obtain solutions with real energy eigenvalues. Spe
ically, equations of the form (2.8) can be solved numerically by converting them to mat
eigenvalue equations. When each side is multipliedué)(p) and integrated oved®p,
excluding the eigenvalug, the quantity on the left-hand side is Hermitian and positive
definite and the quantity on the right-hand side is Hermitian. As a consequence the
ergy eigenvalues must be real (see, for example, [15]). In the very special cases wher
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Bethe—Salpeter equation possess the Hermiticity properties of (2.8), the equation is r

tively easy to solve numerically [2, 16] in spite of the fact that after separation of the tv

angular variables, it is still an integral or partial differential equation in two variables.
Solutions to (2.8) are of the form

Ve(p) = (2.9)

GH (g™, ¢)
FE(p)e@ @, ¢)

where thep® (0, ¢) are the same functions [14] that represent the angular depender
of the bound-state solutions to the Dirac equation when the potential is spherically sy
metric. After the angular integration is performed using Hecke’s theorem [17, 18, 12], t
angular variables separate. The separated equation is written in terms of dimensionless
ables by rewriting the massesras= mp(1 — A) andM = mg(1 + A). The dimensionless
momentump’ is defined byp’ = p/mgy and the dimensionless energypy

_E _E
T M4+m 2mg’

(2.10)

Multiplying the resulting upper and lower equationsfsyand— p’, respectively, and omit-
ting primes since all variables are now dimensionless, in the instantaneous approxima
the separated Bethe—Salpeter equation is

PG (p)
s [ PF)(p)
a)+(p) PFE(p) PG (p)
1-A
- [+(|0)+w (IO)]{ PG (p) +( )| pF® (p)

[GF S @Qj.y (5L

QQ w4 (p)
8712‘)[ R0 “]/dq

)|
|46 @Qj5 ( ) ]
)|

[qF®(@Q)42
8 w

—(@) G(:t) (@ Qjus ( )
(1 A)/ [w+(p) w+(q)] 4G (@Qj53 (5 )
@@ gro Q. (i)
(qQ)Z/dq ) ) kGH (K Q11 (kzzﬁq )Q %< 2)
42r)* ) o-(a) —KF® Q. (qu )Q ( 2)

kF(i)(k)Q]il( 2q >Q1¢z<p223‘;]2>
kG(i)(k)QJ; ( 2 )jS (pzzgqqz)

whereQj.1,, is a Legendre function of the second kind and p) = [(1+ A)? + p?]Y/2.

(2.11)
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The set of two equations with the top signs is transformed into the set of two equati
with the bottom signs and vice versa with the following replacements:

GHP & FO, E®D & GO, ¢ —¢. (2.12)

As a consequence only the equations Fd) and G need be solved. For notational
convenience the superscripts BA” andG™ are omitted in future equations.

3. SOLUTIONS TO THE NONRELATIVISTIC REDUCTION
OF THE BETHE-SALPETER EQUATION

In this section the nonrelativistic reduction of the Bethe—Salpeter equation, which is j
the Schodinger equation, is solved numerically in momentum space. Although the equat
can be solved analytically [18], here it is solved numerically to illustrate one technique t
will be used to solve the Bethe—Salpeter equation in the instantaneous approximatior
equation that, apparently, cannot in general be solved analytically. A method is introdu
for handling the singularity in the kernel that makes possible the use of basis functions
satisfy the boundary conditions both at small and large momenta. For angular momen
state? = 0 and¢ = 1, these basis functions are not as improvement over the basis functi
used in Refs. [7] and [10] that only automatically satisfy the boundary conditions for sm
momenta, but for angular momentum states 1, the basis functions used here converge
to a solution much more efficiently.

Once the instantaneous approximation has been made, it is straightforward to ma
nonrelativistic reduction [1]. Keeping the lowest order term in the interaction,

aQ [* dq
8773 —00 (P—CI)2

p2  p?
E'v(p) = (— + —)‘I’(p) + (). (3.2)

2M  2m

The nonrelativistic energi’ is related to the relativistic energgby E =m+ M + E'.
To solve (3.1) a dimensionless momentphis defined by

/ p
= — 2
whereu is the reduced mass. Equation (3.1) then becomes
. 4QV/=2uF’ /°° d3q’
14+pHe(@p) =-—= w(q). 3.3
A+pHVP) =~ 55 0 —q7 () (3.3)

Equation (3.3) is the integral form of the Solifiger equation for a quanta with mass
and chargey interacting with a stationary charde via the Coulomb potential. Since the
momentum variables are all now dimensionless, for notational convenience the primes
be omitted.

The solution is of the form

¥(p) = R(PYO, $). (3.4
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Using Hecke’s theorem [17, 18, 12] the angular integration is easily performed. The angt
dependence separates, yielding the integral equation

2
1+ p2>pR<p>=x—/ dq Qe(p +4 )qR(q» (3.5)
T Jo 2pq
where

A

9Q J—n _ _
2\ 2B =¢+4n, n=12,.... (3.6)

Equation (3.5) would be straightforward to solve numerically were it not for the fact that tl
Legendre function of the second kinQ, ((p? + g?)/2pq), has a logarithmic singularity
atp=gq.

The boundary conditions are determined with the aid of the asymptotic relationsl
[19]

JATE+1) 1

QD 2 o (o4 3) 2t (3.7)
At small p the functionpR(p) has the form
pwmggw, (3.8)

wherec, is a constant. From (3.7) it follows that at smpll Q,((p? + g?)/2pqg) — p‘*L.
Equating the left- and right-hand sides of (3.5), at snpahe equalitypR(p) ~ p‘*tis
obtained, implying

Co=4¢+1 (3.9)

Using analogous logic, at largethe functionp R(p) has the form

1
PROP) 2, o (3.10)

Solutions are obtained by expandipdR(p) in terms ofN cubic splinesB; (p) [8],

N
PR(p) = F(P) > _¢;Bj(p). (3.12)

=1

By choosing the convergence functibrip) in (3.11) so that at small and larget behaves
as the solutiorpR(p) itself, fewer splines are required to accurately represent solutiol
that go to zero rapidly at the boundaries.

Cubic splines are defined on five consecutive knots. To determine the spacing of
knots,N — 4 zerosx; of a Chebychev polynomial are calculated using the formula

@ -
Xi =—C0sS—, i=12..., N—4 3.12
i 2N 4 (3.12)
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and then the knot$; 4 on the positivep axis are determined by

X:+c:2, i=12..., N—4 (3.13)

whereC; andC; are constants. The kn®j is placed at the origin and three knots are place
on the “negative”p axis to create maximum freedom in constructing the solupi&tp)
near the origin. The three knots on the “negatipegxis are mirror images of the first three
knots in (3.13).

Spence and Vary [10] note that integrals of the form

0 2+q2
dp g+ (p ) k=012 ... 3.14
| apptan( (3.14)

are both finite and readily calculated analytically, so they chdog® in (3.11) so that
the boundary conditions are satisfied npat 0 provided that the sum of splines in (3.11)
is nonzero and slowly changing near the origin. ThaFigp) = p“**. Since the splines
vanish at the largest knot, an appropriate sum of splines will satisfy the boundary condi
at largep. However, the boundary conditions are satisfied both at small and atgavith

the choice

(41
p

F(p) (3.15)

- (CZ + p2)€+% ’

wherec is a constant. Note that at small F(p) — p‘*! as expected from (3.9), while at
large p, F(p) — p~“*?, which is one power op less than is indicated in (3.10). Since
the last spline in the expansion (3.11) vanishes at the largest knot, the boundary condit
will be satisfied for both small and large momenta provided that the sum of splines in (3.
is slowly changing at small momenta and goes to zero as the reciprocal of the momen
at large momenta. By choositig( p) in (3.11) to be given by (3.15), accurate solutions tha
decrease rapidly at small and large momenta can be obtained.

Equation (3.5) is solved numerically by converting the integral eigenvalue equation i
a generalized matrix equation using the Rayleigh—Ritz—Galerkin method [20]. The solut
is expanded in terms of splines using (3.11), and then both sides of (3.5) are multipliec
Bi (p) F(p) and integrated ovep. A generalized matrix equation results that is of the formn
Ac = ABc, where the matrice$ andB are given, respectively, by

Ajj =/0 dpB(PF(P)(L+ p*)F(p)B;(p) (3.16a)
and
2 [® 00 p2 + g2
B, =—/ de(p)F(p)/ dqu( )F(q)Bj(q). (3.16b)
7 Jo 0 2pq

The elements of the column vectorare the expansion coefficients in (3.11). Since
both of the above matrices are symmetric akds positive definite, the eigenvalues are
real [15].
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The choiceF (p) = p“** works well for small values of angular momentum because th
sum of a small number of splines readily creates a function that decregse$'a$ atlarge
p, thus satisfying the boundary condition as given in (3.10). In addition, Wign = p‘+1,
the integrals oveQ,((p? + g?)/2pq) in (3.16b) can be performed analytically because
they are of the form (3.14). For larger values of angular momentum, however, the chc
F(p) = p**! does not work well because the sum of a small number of splines does 1
readily create a function that decreases sufficiently rapidly at large momentum to sat
the boundary conditions.

The choice (3.15) for the convergence function immediately allows the boundary c
ditions to be satisfied by a sum of splines that is slowly changing, but now the integr
overq in (3.16b) can no longer be readily performed analytically. Integration over the si
gular kernel is accomplished as follows: Except ineaneighborhood of the singularity,
all integrations are performed numerically using Gaussian quadrature with a seven-p
option. As the integration variable approaches the singularity, where the kernel chan
most rapidly, integration intervals are decreased to maintain accuracy of the numerical i
gration. Within anc-neighborhood of the singularity, the integrand, excluding the singule
Legendre function of the second kin@, ((p? + g2)/2pq), is expanded in a Taylor series
about the singularity. In the-neighborhood of the singularity the integral is then a sum o
integrals of the form (3.14) that can be integrated analytically. The paramistehosen to
be the smaller of 0.01 or the distance from the singularity to the nearest knot, thus avoic
the complication of integrating over a knot.

To obtain a numerical estimate of the accuracy of each solution, the left- and right-he
sides of (3.5) are calculated midway between each pair of knots on the (popiax&). A
reliability coefficientr, which is a statistical measure of how closely the two sides of th
equation agree at selected points, is calculated using the formula [11]

L AL T (LHS — RHS)?

- - — (317
R { ZUPLHS + RHS)? - i [ (LHS + RHS)| |

whereLHS andRHS are, respectively, the values of the left- and right-hand sides of tt
equation at theth point. If the two sides of the equation agree exactly at all of the selecte
points, them equals unity. Determining where the left- and right-hand sides of the equati
agree least well reveals possible problems with trial solutions.

WhenF (p) = p‘*1, excellent solutions are obtained fo= 0 and¢ = 1: With 21 splines
in the expansion (3.11), eigenvalues are correct to four or five significant figures &
corresponding-values are inthe ranged®9< r < 1.00. However, whei = 2, as shown in
the second and third columns of Table I, an incorrect eigenvalue appears with a corresp
ing r =0.00112. For¢ = 3, the first few eigenvalues are accurate, but the correspondi
r-values have magnitudes on the order of or less than, ifdicating that the solutions
are unsatisfactory. Examination of these solutions reveals that the left- and right-hand s
of the equation do not agree near the the boundaries. By choosing the convergence f:
F(p) as given in (3.15), the difficulties that appeared for 1 are eliminated, as can be
seen from the fourth and fifth columns of Table I.

The advantage of using basis functions that obey the boundary conditions is furthel
lustrated in Fig. 1. The exact radial wave function in momentum space [18] is grapf
for the state 7F, which is the state corresponding to the final entry in Table 1. Numeri
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TABLE |
Numerical Values of A = £+ 1,£+2,...When 21 Splines
Are Used in the Expansion (3.11)

F(p)=p"/
F(p) — pH—l (C2+ pZ)H—S/Z
14 A r A r

2 3.00000 0.99884 3.00000 1.0000
4.00007 0.97013 4.00001 1.0000
4.49547 0.00112 5.00003 1.0000
5.00030 0.84320 6.00008 1.0000
3 4.00118 0.00266 4.00000 1.0000
5.00844 —0.00028 5.00000 1.0000
6.02762 —0.00031 6.00004 1.0000
7.06566 —0.00023 6.99999 1.0000

solutions for the radial wave function are also graphed when the convergence functi
F(p) = p**1/(c® + p?)**+32 andF (p) = p‘** are used. The radial wave function calcu-
lated with the convergence functidh(p) = p‘+1/(c? + p?)¢*+3/2, which provides basis
functions that obey the boundary conditions, is so close to the exact solution that the
curves cannot be distinguished on the graph. However, for the solution calculated v
F(p) = p‘*?, the left- and right-hand sides of the equation do not agree at small and la
momentump because the basis functions do not satisfy the boundary condition at la
momentum.

4. SOLUTIONS IN THE INSTANTANEOUS APPROXIMATION

Solutions to the Bethe—Salpeter equation in the instantaneous approximation are obte
using two different basis systems. The first basis system comprises essentially the same
functions that were employed to calculate solutions in the nonrelativistic case. Because
basis functions vanish at large momenta, they are particularly suitable for represen
solutions that have significant support only to moderately large values of momentum (
position). For this basis system, four splines are nonzero between consecutive knots i

—  Exact Solution
. F(p) — p“'l/(CQ +p2)z+3/2

------- F(p) =

-1 /

FIG. 1. The radial hydrogen wave function for the state 7F in momentum space as a function of the dim
sionless momentum.
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physical region except for the final four knots at the largest values of momentum: There
number of nonzero splines between consecutive knots decreases from three to two until
one spline is nonzero between the final two knots, thus making it increasingly difficult
represent solutions at large momenta. To better represent solutions that are highly loca
in position space and, therefore, have significant support at large values of momentul
second basis system is used in which some basis functions vanish only at infinite value
momentum, and four splines are nonzero between all knots in the physical region.

The boundary conditions gsapproaches zero and infinity are determined using the san
procedure employed in the previous section. The results are as follows:

PG(P) — pI*E, pF(P) — P/, (4.12)
1
PG(P) e i PF(P) oiE (4.1b)

Solutions can be obtained using methods of the previous section and are of the form

N N
PG(p) = G1(P) > 9iBj(p). PF(P) = Fa(p) Y _ fiBj(p). (4.2)

j=1 j=1

The convergence functios (p) and.F1(p) are chosen so that the boundary conditions
are automatically satisfied provided that the sums of splines in the previous equation
slowly changing for small and large momenta:

pH‘% pH'g

G1(p) TR 1(P) @+ i (4.3)

In the above equationy andcy are constants. At smapl, pGi1(p) and pF1(p) vanish as

indicated in (4.1a), but at large they decrease by a factgrmore slowly than indicated

in (4.1b) because the splines themselves vanish at lprges can be seen from (4.3),

solutions go to zero rapidly at the boundaries even at the smallest yatug/2, so it

would be difficult to obtain solutions in the instantaneous approximation without usir

convergence functions that obey the boundary conditions at both small and large mome
Equation (2.11) is converted into a generalized matrix equation of the form

SR

by multiplying the top and bottom equations &y p) Bi (p) andF1(p) B (p), respectively,
andthenintegrating over. The elements of the column vectgrand f are, respectively, the
expansion coefficientg; and f; in (4.2). Since the matrice& andB have been constructed
so that both are symmetric ads positive definite, the dimensionless energy eigenvalue
is forced to be real [15] as required.

The Bethe—Salpeter equation in the instantaneous approximation contains double |
grals, while in the nonrelativistic limit the equation involves only single integrals. In spit
of this complication, by performing integrations in a specific order, all integrals with
logarithmic singularity that are necessary to solve the equation are of the form alre:
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encountered in the previous section. However, the technique used to integrate over the |
rithmic singularity in the previous section fails at very large values of momentum: All of tt
terms being expanded in a Taylor series about the singular pairg functions ofj? with
the result that a typical term in the expansiomigg? — p?)". Within ane-neighborhood
of p, the maximum value of> — p? is of the order Pe. Whenp is on the order of Je,
the expansion loses accuracy. By choosing decrease linearly with increasing this
problem is avoided.

To check the accuracy of the solutions by calculating the reliability coefficient, douk
integrals of the following form must be evaluated:

> dqg PP+ 9%\ [ 2+q?\ gt
/o w_(q)Qe< 2pq )/0 deE( 2kq )(c2+k2)dz Bj (k). (4.5)

The integral over the variablecan be calculated as previously discussed. Except within
e-neighborhood of the logarithmic singularity of the integrand, the integral over the varial
g is evaluated numerically. Within theneighborhood, the integral ovkiis expressed as
a Taylor series in the variabbg

0 i K2 4+ g2 gl Bk 1 3 J_ "
A @( 2kq)(CZHZ)dZ;():q %%mm—p). (4.6)
The Taylor series in the previous equation depends on the fact that the integral vanishe
g‘+! at smallg, a fact that is readily verified using (3.7). The coefficieajtare determined
numerically so that the expansion and the integral agrge=atp + ¢, p+¢/3, p — €/3,
and p — €. Using the expansion in (4.6), within theneighborhood of the logarithmic
singularity atp, the integral (4.5) can be performed analytically.

To better represent solutions that are highly localized in position space and, theref
have significant support at large values of momentum, a second basis system is introd
in which some basis functions vanish only at infinity. To construct the basis system,
momentum is first mapped onto a compact space with the transformation

p*-a
p2+a’

x(p?) =b 4.7)
wherea andb are constants.

The knots are determined by first calculatiNg- 8 zerosx; of a Chebychev polynomial
using the formula

2 — Hm

Xj = —COS————,
! 2(N — 8)

i=12.. N—8. (4.8)

The knots in the regior-b < x < b are then given by
Tiia=bx, i=12...,N-8 (4.9
The knotT, is placed akk = —b (p = 0), and three knots are placed in the regioa —b

(on the “negative”p axis) to create maximum freedom in constructing solutions near tt
origin. The three knots in the region< —b are mirror images of the first three knots in
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(4.9). In a similar fashion the kndty_3 is placed ak = b (p = c0), and three knots are
placedintheregior > b(p > oo). With the above knot structure, four splines are nonzert
between each pair of adjacent knots in the physical region.

The solution is expanded in terms of splines,

N N
PG(P) = G2(P()) Y G Bj(0), PF(p) = Fa(p(x)) Y _ f;Bj(x), (4.10)
j=1 j=1
where
pj""% pl+%
Ga2(p) = W’ Fa(p) = W (4.11)

For the second basis system the final three splines in the expansion are nonzerd at
(p = o0). Consequently, solutions that have significant support atlarge values of moment
are more readily expressed in terms of the second set of basis functions. Since some sy
are finite atp = oo, the functionsG,(p) and F»(p) are chosen to satisfy the boundary
conditions (4.1) both at small and at large momenta.

To integrate over singularities at large values of momerguinis easier to evaluate the
integral if the integrand is expanded in a Maclaurin series in the varighlengtead of in a
Taylor series iy because the Maclaurin series converges efficiently from the knot to infinit
Specifically, if the location of the first knot less than the singularity corresponds to a val
of momentum equal to or less than 50, then integrals are evaluated as previously discu:
However, if the first knot less than the singularity corresponds to a value of moment
greater than 50, the integral is evaluated numerically from —b (p = 0) to the knot.
From the knot tax = b (p = 00), the integral is evaluated analytically by expanding the
integrand, excluding the Legendre function of the second kind, in a Maclaurin series. Wi
the transition value of momentum (50) is somewhat arbitrary, the value must be sufficier
large that the MacLaurin series converges efficiently with just four terms. The necess
formulas for carrying out the integration are given in the Appendix.

A corresponding modification is required to evaluate the double integrals (4.5). When
location of the first knot less than the logarithmic singularity at p corresponds to a value
of p equal to or less than 50, the integral is evaluated as before. When the position of
knot corresponds to a value pigreater than 50, the integral is evaluated numerically excej
within ane-neighborhood of the singularity. Within tkkeneighborhood, the integrals over
k are expanded as a Maclaurin series,

00 K2 + 2 qi+d 1 3 1
dk Qg( ) Bi(k)=—7 > aj—. (4.12)
/o 2kq ) (2 + k% Qe gl

The coefficients; are determined numerically so that the expansion and the integral agl
atq=p+e, p+e€/3, p—¢€/3, andp — €. Using the expansion in (4.12), within the
e-neighborhood of the logarithmic singularity pf the integral (4.5) can be performed
analytically.

The first basis system has more knots concentrated at small values of momentum
therefore, is more suitable for representing weakly bound solutions or solutions with deta
structure in this region. The second basis system has more knots atlarge values of mome
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-10 -8 5 “2 -2
qQ/Ar

FIG. 2. The dimensionless energy eigenvalues E/(M + m) of the states 1%, 2P, ., and 23, as a
function of the coupling constantQ/4x in the instantaneous approximation.

and is better for representing strongly bound solutions that have significant support at |:
values of momentum. However, at least when 35 or fewer splines are used, the second
system does not adequately represent the most strongly bound solutioaswitihe order

of or less than about 0.3.

For the solutions graphed in Figs. 2 and 3, the constituent masses are equal, alth
solutions with unequal constituent masses are no more difficult to determine. Soluti
are calculated using the two different basis systems previously discussed. For value
¢ = E/(M + m) > 0.95, the graphed results are those obtained from the first basis systt
which has more knots at small momenta. For all other valuestb& graphs are an average
of the solutions obtained from the two basis systems. Comparing solutionofiained
from the two basis systems provides an additional indication of accuracy. The soluti
for ¢ almost always agree to within 0.04 and usually agree more closely, while reliabil
coefficients are almost always greater than 0.99. Solutions are calculated by expandin
radial wave function in terms of 35 splines.

Incomparing Figs. 2 and 3, notice that as the coupling constant decreases in magnitud
repulsive effects of angular momentum become increasingly apparent so that for states
the same coupling constant, those with higher angular momentum are more weakly bo

~10 -8 -6 _2 22
qQ/4m

FIG. 3. The dimensionless energy eigenvalues E/(M + m) of the states 2§, 3D;,, and 3R, as a
function of the coupling constantQ/4x in the instantaneous approximation.
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The curves in Figs. 2 and 3 exhibit oscillatory behavior that is different from analytic
and numerical solutions of similar equations: For solutions of the one-body Dirac and Klei
Gordon equations with a Coulomb potential, as the absolute value of the coupling cons
|qQ/4rn| increases, the bound-state energy decreases monotonically and, above a cr
value of|qQ/4rx|, no real energy eigenvalues exist. Dykshoetrial.[21] found solutions
with this same behavior using a variational principle to numerically solve integral equatic
for bound states in QED within alimited Fock-space approximation. By including the effec
of the crossed ladder diagrams, Breeiral. [22] obtained a formula for the bound-state
energy of two charged particles that also decreases monotonically as the magnitude o
coupling constant increases.

In the limit that one of the constituent particles becomes infinitely massive, the two-bo
Bethe—Salpeter equation does not reduce to the corresponding one-body relativistic e
tion unless the crossed graphisincluded [23]. As a consequence, the solutions obtained
should not agree with those of the Dirac equation in the limit Mabecomes infinite or
with the Klein—Gordon equation in the limit that becomes infinite because the ladder ap-
proximation has been made. If the crossed graph were included in the Bethe—Salpeter €
tion before making the instantaneous approximation, the oscillatory behavior in Figs. 2 :
3 would vanish in the limit that either of the constituent particles became infinitely massiy

5. SUMMARY

A logarithmic singularity is typically present in the kernels of two-body, bound-state it
tegral equations after the two angular variables associated with three-dimensional sphe
coordinates are separated. Because of difficulty integrating over this singularity, heretot
numerical solutions have often been calculated using basis functions that do not satisfy
boundary conditions, making it particularly difficult to obtain bound-state solutions th
decrease rapidly at both small and large momenta. Here integrals with the singular ke
are evaluated for a wide variety of basis functions: Integrations are performed numeric:
except within the neighborhood of the singularity where the integration is performed ai
lytically by expanding the integrands, excluding the singular kernels, either analytically
numerically in a Taylor series or a Maclaurin series.

The basis functions used are the product of a “convergence” function and a spline.
convergence function is chosen so that if the sum of the splines is slowly changing,
boundary conditions are automatically satisfied. There are two significant advantage
using basis functions that satisfy the boundary conditions: (i) Fewer basis functions
typically required to obtain accurate solutions. (ii) In cases where the solution decrea
rapidly at both small and large momenta, it is exceeding difficult if not almost impossib
to obtain numerical solutions unless such basis functions are employed.

Two rather different basis systems are used to calculate solutions. In the first basis
tem the splines vanish at large momenta, making them particularly suitable for repres
ing weakly bound solutions. The second basis system is more appropriate for calcL
ing strongly bound states because some basis functions vanish only at infinite value
momentum, thereby better representing solutions that are highly localized in position sp
and, therefore, have significant support at large values of momentum.

To obtain an estimate of the accuracy of each solution, a reliability coefficientis calcula
that is a statistical measure of how closely the left- and right-hand sides of the equa
agree at a series of selected points.
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APPENDIX: CALCULATION OF INTEGRALS

Here formulas are given for calculating the integrals of the form

b 2 2
Lk _ p’+g*\ 1 ¢=0 k=123...,
B(a.b)(p)=/a dqu( 204 )qm, (=1 k=o012.. (A1)

that are required to integrate over the logarithmic singularities when they occur aplarge
Using the recursion formula for Legendre functions of the second kind [24],

Qu1(2) =

sz+1( ), (A2)

a recursion relation foB(a b (P) follows immediately:

e+1k 20+1 p £k+2
{410ab

V4
Blas (P) =7 |3Bab (P + 5 5p f;m(p)]— B (p). (A3)

The integraIstéf‘b)(p) are readily expressed in terms of the integrals

| +
1 o (D) = / dq”(q D, (A%)

Specifically,

Bob) (P) = 155 (P) — 1) (= P) (A5)

and

p 1
B (P) = 5 [1&5 (P — 1G5 P] + 5 [1an (P — 16y (- P)]
—In (2 ifk=0
+{1 1(a)1 _ } (A6)
The mtegralsl(a b (P) and I(a b (P) are calculated using standard tables of integrals [24

aIthoughI(a b (P) is evaluated as an infinite series. fkor 2, the integral X (a.p(P) can be
calculated using the following formula for the integtal

I—/d '”(a+bx), k=2 (A7)

Integrating by parts gives

| — 1 In(a + bx) +b/ dx
T k-1 xk—1 x*~L@a+bx) |’
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The integral in the above expression is evaluated using partial fractions, yielding the des

formula:
| = kil{ |n(i:bx) +< Z) i@+ bx)
() e B ] e
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